
TRANSFORM ER TO 
RELATIONAL SCHEMA

• This is the logical design step of the database 
design process.

• This step transforms ER Diagrams to relations.



From ER Diagram to Relations (1)

ER Concept               Relational Concept

Strong entity                          Tuple 

Weak entity                              ??? 

Strong entity set                       Relation

Weak entity set                            ??? 

Attribute                              Attribute

Key                                     Key

Composite attribute                        ???

Multi-valued attribute                      ??? 



From ER Diagram to Relations (2)

ER Concept            Relational Concept 

Unary 1-1 relationship                ??? 

Unary 1-m relationship              ??? 

Unary m-m relationship               ???

Binary 1-1 relationship                 ???

Binary 1-m relationship                ???

Binary m-m relationship               ???

Ternary relationship                      ??? 

IS_A hierarchy                           ??? 



From ER Diagram to Relations (3)

Summary:

• ER model is more semantically oriented than the 
relational model.

• Some ER concepts, e.g., connectivity constraints, 
cannot be expressed in the relational model.

• Are there important concepts that are supported by the 
relational model but not by the ER model?

– Foreign key



Basic Ideas of the Transformation

Entity            ====> Tuple 

Entity set       ====> Relation 

Attribute        ====> Attribute

Key                ====> Key 

Relationship  ====> Tuple or foreign key value(s)

Relationship set  ====> Relation or foreign key(s)



An Example (1)

Professors Advise Students

p1: 123, Jack, Prof.  p1 advises s1   s1: 456, John, 3.4

p2: 234, Ann, Prof. p1 advises s2   s2: 567, Carl, 3.2

p3: 345, Bob, Prof.  p3 advises s3   s3: 678, Ken, 3.5

adviseProfessors

Pid Name Rank

(0, m) (1, 1)
Students

Sid Name GPA



An Example (2) 

Transform the ER diagram into three relations:

Professors Advise Students

Pid Name  Rank    Pid Sid  Sid    Name   GPA

123    Jack     Prof. 123    456   456   John      3.4

234  Ann      Prof.      123    567  567   Carl       3.2

345  Bob      Prof.      345    678 678    Ken      3.5 



An Example (3) 

Two relations are sufficient:

Professors Students

Pid Name Rank

123 Jack Prof.

234 Ann Prof.

345 Bob Prof.

Sid Name GPA Pid

456 John 3.4 123

567 Carl 3.2 123

678 Ken 3.5 345



From ER Diagram to Relations 

Transformation Guideline 1: Transform relationship sets 
to foreign key attributes whenever possible.



Transform Binary Relationship (1)

Case 1: one-to-many relationship 

===> E(A, B),  F(C, D, A) 

• Relationship R is transformed to a foreign key.

• The foreign key goes to the side with max_card = 1

FE

A B D

R
(?, m) (?, 1)

C



Transform Binary Relationship (2)

==> Depts(Name, Location)

Employees(Emp#, Name, Age, Dept_name)

Renaming is useful for improving understandability.

work_inEmployees

Emp# Name Age

(1, 1) (1, m) Depts

Name Location



Transform Binary Relationship (3)

Case 2: one-to-one relationship

Case 2.1: x = (1, 1) and y = (1, 1) 

===> E(A, B),  F(C, D, A)  or

===> E(A, B, C),  F(C, D) 

FE

A B D

R
x y

C



Transform Binary Relationship (4)

==> Depts(Name, Location)

Managers(Emp#, Name, Age, Dept_name)

==> Depts(Name, Location, Manager_Emp#)

Managers(Emp#, Name, Age)

managesManagers

Emp# Name Age

(1, 1) (1, 1)
Depts

Name Location



Transform Binary Relationship (5)

Case 2.2: x = (0, 1) and y = (1, 1) 

===> E(A, B),  F(C, D, A) 

• The entity set with the total participation is transformed to a 
relation with a foreign key.

FE

A B D

R
x y

C



Transform Binary Relationship (6)

==> Depts(Name, Location, Manager_Emp#)

Employees(Emp#, Name, Age)

• Why not let Employees have the foreign key?

managesEmployees

Emp# Name Age

(0, 1) (1, 1)
Depts

Name Location



Transform Binary Relationship (7)

Transformation Guideline 2: Avoid introducing null 
values as much as possible. When it is necessary 
to introduce null values, introduce as few null 
values as possible.



Transform Binary Relationship (5)

Case 2.3: x = (0, 1) and y = (0, 1)

• Transform the relationship set into a foreign key 
attribute.

• The foreign key should go to the relation that 
causes the least number of null values.



Transform Binary Relationship (9)

Case 3: many-to-many relationship

Case 3.1: R has no attribute

===> E(A, B), F(C, D), R(A, C)

• Transform the m-to-m relationship to a separate relation.

• R has two foreign keys.

• The key of R consists of the foreign keys.



Transform Binary Relationship (10)

==> Students(Sid, Name, Age)

Courses(Course#, Title)

Takes(Sid, Course#)

Case 3.2: R has attribute Z

===> E(A, B), F(C, D), R(A, C, Z)

takesStudents

Sid Name Age

(1, 6) (5, m)
Courses

Course# Title



Transform Ternary Relationship

==> E1(A, B), E2(C, D), E3(G, H), 

R(A, C, G, Z)

E2

D

R

C

E1

BA

E3
HG

Z



Transform Unary Relationship (1)

• Create a shadow entity set and transform the unary 
relationship into a binary relationship.

• Apply the rules for transforming binary relationships.

• After the transformation,  remove one redundant 
relation, or if there is no redundant relation, remove the 
relation with fewer attributes.



Transform Unary Relationship (2)

Courses(Course#, Title)
Prereq(Course#, Prereq_Course#)

prereq

Courses

TitleCourse#

(0, m) (0, n)

Courses

TitleCourse#

prereq(0, m)

(0, n)

Courses

Title

Course#



Transform Unary Relationship (3)

Persons(SSN, Name, Age, Spouse_SSN)

married_to

Persons

Name
SSN

(0,1) (0,1)

mar_to
(0,1)

Age

Persons

Name
SSN

Age

Persons

(0,1)



Transform Unary Relationship (4)

Persons(SSN, Name, Age, Mother_SSN)

mother_of

Persons

Name
SSN

(0, m)
mother

(1, 1)
child

mo_of(0, m)

Age

Persons

Name
SSN

Age

Persons

(1, 1)



Transform Multi-valued Attribute (1)

• Create a separate relation for each multi-valued attribute.

• E_C.A should be defined to be a foreign key referencing E.A

E

BA C

E(A, B),  E_C(A, C) 



Transform Multi-valued Attribute (2)

==> Books (ISBN, Title, Publisher)

Book_Authors (ISBN, Author)

• Define Book_Authors.ISBN as a foreign key referencing Books.ISBN

Books

PublisherISBN AuthorsTitle



Transform Composite Attribute (1)

Method 1: Use only simple attributes and ignore the composite 
attribute.

==>

E

BA C E(A, D, H, C)

D H



Transform Composite Attribute (2)

Method 2: Transform the composite attribute to a separate relation. 

==>

E

BA C
E(A, C),  
E_B (A, D, H)

D H



Transform Composite Attribute (3)

An Example using method 2:

Employees

PictureEmp# Age

Employees (Emp#, Name, Age, Salary)

Emp_Pic (Emp#, Bitmap, Format, Height, Width)

Format Height

Name

Width

Salary

Bitmap



Transform Weak Entity Set

==> E (A, B, C),   F(A, D, G, H)

• The key of F consists of the key of E and the partial key of F.

• F.A is a foreign key referencing E.A

E

BA C

F

GD H

R
(0, m) (1, 1)



Transform IS_A Hierarchy (1)

E

BA C

E1 E2

D F G H



Transform IS_A Hierarchy (2)

Method 1: For general case 

==>  E(A, B, C),  E1(A, D, F), 

E2(A, G, H)

• Only the key is explicitly inherited from the super entity set.

• A tuple in E either corresponds to an entity in E or an entity in a 
sub entity set.

• E1.A and E2.A are defined to be foreign keys referencing E.A.



Transform IS_A Hierarchy (5)

Persons

NamePid Age

Students Faculty

GPA Rank



Transform IS_A Hierarchy (6)

Real world information:
Pid Name   Age  GPA   Rank

stud:   123456789  John        27     3.5      

facul:  234567891   Bill       43              Prof.

staff:   345678912  Mary       37           



Transform IS_A Hierarchy (7)

Method 1:

Pid Name Age

123456789 John 27

234567891 Bill 43

345678912 Mary 37

Persons
Pid GPA

123456789 3.5

Students
Pid Rank

234567891 Prof.

Faculty



Transform IS_A Hierarchy (3)

Method 2: When the union of the sub entity sets contains the same 
set of entities as the super entity set.

==> E1(A, D, F, B, C), E2(A, G, H, B, C)

• All attributes are explicitly inherited from the super entity set.

• In principle, this method could also be used when the union of 
the sub entity sets is not a superset of the super entity set. In this 
case:

==> E(A, B, C), E1(A, D, F, B, C), 

E2(A, G, H, B, C)



Transform IS_A Hierarchy (8)

Method 2:

Pid Name Age GPA

123456789 John 27 3.5

Students

Pid Name Age Rank

234567891 Bill 43 Prof.

Faculty

Pid Name Age

345678912 Mary 37

Persons



Transform IS_A Hierarchy (4)

Method 3: When the sub entity sets are disjoint based on the values of 
an (implicit) attribute K.
==> E(A, B, C, D, F, G, H, K)

• K has the same value for entities from the same entity set but 
different values for entities from different entity sets.

E.g.: Super entity set: Employees
Sub entity sets: Programmers, Analysts, …
K: Position

• For entities from a sub entity set, fill missing attributed with null 
values.



Transform IS_A Hierarchy (9)

Method 3:

Pid Name Age GPA Rank Type

123456789 John 27 3.5 Student

234567891 Bill 43 Prof. Faculty

345678912 Mary 37 Staff

Persons



Transform IS_A Hierarchy (10)

Comparison of the three methods
• Method 3 results in the smallest number of tables, followed usually 

by method 2 and then method 1.

– Why?

• Method 3 may introduce significant amount of null values while 
methods 1&2 don’t.

– Why?

• Method 2 usually leads to smaller tables than methods 1&3.

– Why?



Transform IS_A Hierarchy (11)

Factors that may influence the choice of method
• The number of m-to-m & ternary relationships and multi-valued 

attributes of super entity set.
– Large number favors methods 1&3. Why?

• The number of attributes and relationships of the sub entity sets.
– Large number favors methods 1&2. Why?

• The number of features shared by sub entity sets.
– Small number favors method 2. Why?

• Whether or not every entity in the super entity set is contained in 
one of the sub entity sets.
– Yes favors method 2. Why?



Transform IS_A Hierarchy (12)

• If an IS-A hierarchy has more than two levels, it is possible to 
apply a different basic transformation method to transform a 
different portion of the hierarchy.



Transform a Complex ER Diagram (1)
A general procedure:
• Transform each entity set into a relation (excluding multi-valued 

and composite attributes).
– Transform each IS_A hierarchy 

• Consider two adjacent levels (parent-child) at a time.
• For methods 1 and 2, transform entity sets in a top-down manner 

(keep inheritance in mind). 
• For method 3, transform entity sets in a bottom-up matter (keep 

reverse inheritance in mind).

– Transform each multi-valued attribute into a separate relation. 
– Transform each composite attribute (select appropriate 

method).
– Specify the key for each relation.



Transform a Complex ER Diagram (2)

• Transform each relationship set. 

– For any unary/binary 1-to-1 or 1-to-m relationship, transform 
it by adding a foreign key to an appropriate relation.

– Transform any m-to-m or high degree (degree > 2) 
relationship by creating a separate relation. Specify the key.

– Re-visit relations involved in IS_A hierarchies to deal with 
feature inheritance.

– Specify foreign keys.



Transform a Complex ER Diagram (3)

Cities
C_name

Emp#

Name

Age

Population

Employees

Managers Programmers

live_in

Hobbies

Budget years_of_experience

Projects

work_on

use

Languages

Proj# Name

L_name

Hours

(1, m)

(1, 1) (0, n)

(1, r)



Transform a Complex ER Diagram (4)

Use method 1:
Employees(Emp#, Name, Age, C_name)
Employee-Hobby(Emp#, Hobby)
Managers(Emp#, Budget)
Programmers(Emp#, Years_of_experience)
Cities(C_name, Population)
Projects(Proj#, Name)
Languages(L_name)
Work_on(Emp#, Proj#, Hours)
Use(Emp#, Proj#, L_name)



Transform a Complex ER Diagram (5)
Use method 1 (continued):

• Employee-Hobby.Emp#, Managers.Emp#, Programmers.Emp#
and Work_on.Emp# are foreign keys referencing Employees.Emp#

• Use.Emp# is a foreign key referencing Programmers.Emp#

• Employees.C_name is a foreign key referencing Cities.C_name

• Work_on.Proj# and Use.Proj# are foreign keys referencing 
Projects.Proj#

• Use.L_name is a foreign key referencing Languages.L_name



Transform a Complex ER Diagram (6)

Use method 2:
Employees(Emp#, Name, Age, C_name)
Employee-Hobby(Emp#, Hobby)

Managers(Manager-Emp#, Name, Age, Budget, C_name)
Manager-Hobby(Manager-Emp#, Hobby)

Programmers(Programmer-Emp#, Name, Age, Years_of_experience, 
C_name)

Programmer-Hobby(Programmer-Emp#, Hobby)



Transform a Complex ER Diagram (7)

Cities(C_name, Population)

Projects(Proj#, Name)

Languages(L_name)

Work_on(Emp#, Proj#, Hours)

Manager-Work_on(Manager-Emp#, Proj#, Hours)

Programmer-Work_on(Programmer-Emp#, Proj#, Hours)

Use(Programmer-Emp#, Proj#, L_name)



Transform a Complex ER Diagram (8)

• Employee-Hobby.Emp# and Work_on.Emp# are foreign keys referencing 
Employees.Emp#

• Manager-Hobby.Manager-Emp# and Manager-Work-on.Manager-Emp# are 
foreign keys referencing Managers.Manager-Emp#

• Programmer-Hobby.Programmer-Emp#, Programmer-Work-on.Programmer-
Emp# and Use.Programmer-Emp# are foreign keys referencing 
Programmers.Programmer-Emp#

• Employees.C_name, Managers.C_name and Programmers.C_name are foreign 
keys referencing Cities.C_name

• Work_on.Proj#, Manager-Work-on.Proj#, Programmer-Work-on.Proj# and 
Use.Proj# are foreign keys referencing Projects.Proj#

• Use.L_name is a foreign key referencing Languages.L_name



Transform a Complex ER Diagram (9)

Use method 3:

Employees(Emp#, Name, Age, C_name, Budget, 
Years_of_programming_experience, Job_type)

Employee-Hobby(Emp#, Hobby)

Cities(C_name, Population)

Projects(Proj#, Name)

Languages(L_name)

Work_on(Emp#, Proj#, Hours)

Use(Emp#, Proj#, L_name)



Transform a Complex ER Diagram (10)

Use method 3 (continued):
• Employee-Hobby.Emp# and Work_on.Emp# and Use.Emp# are foreign 

keys referencing Employees.Emp#

• Employees.C_name is a foreign key referencing Cities.C_name

• Work_on.Proj# and Use.Proj# are foreign keys referencing Projects.Proj#

• Use.L_name is a foreign key referencing Languages.L_name


